Time of attendance: Tuesday, February 13, 2018 04:00 PM - 05:00 PM E24A-0255 **Better Understanding of the Biogeochemical Buffering Capacity of Ria Formosa, Portugal to Future Scenarios of Global Changes @AGU • ASLO • O**

11-16 February • Portland, Oregon, USA

Alexandra Cravo^a (acravo@ualg.pt), José Jacob^a, Alexandra Rosa^a, Marta Rodrigues^b, João Rogeiro^b ^a CIMA/Universidade do Algarve, Faro, Portugal; ^b Laboratório Nacional de Engenharia Civil, Lisboa Portugal

Background:

Estuaries and Coastal Lagoons: Most productive ecosystems on Earth, providing multiple goods and ecosystem services. **Protection and conservation are vital**.

Accurate modeling and prediction of the effects of climate change and variability, and the monitoring of their impacts, require sustained and extended observations of these ecosystems.

UBEST Project Goals

- Improve global understanding of the biogeochemical functioning and buffering capacity of 2 distinct Portuguese estuaries (Tagus estuary, and Ria Formosa lagoon - Fig. 1).
- Susceptibility to future scenarios of anthropogenic inputs and climate change.

RESULTS:

Real Time Observation (RTO) station – Innovative approach

Continuously record every 15 min (Fig. 2), from May 17-Jan 18 (8 months): Temperature, salinity, pH, Dissolved oxygen (Fig. 3), and chlorophyll a and turbidity (not shown)

What can we learn from it?

- Capture of seasonal signatures
- Capture of episodic events and marine processes
- Upwelling events by \downarrow in temperature
- Salinity ↑ in Summer
- pH \downarrow in Summer, accompanying DO
- DO, lowest in Summer at night, with values < Minimum Allowable Value (MAV in Fig. 3)
- Chl-*a* (not shown) globally < 5 μ g/L, max in Summer followed by Autumn, by satellite images (Fig. 3)
- Turbidity (not shown), some outliers data to ignore, globally < 15 NTU

SEASONAL SEMI-DIURNAL TIDAL CYCLES B

Sampling: Spring: 5/30/2017; Summer: 9/14/2017; Autumn: 10/25/2017 • 7 sites (Fig. 1), complete semi-diurnal tidal cycles (~13 h), every 2 h: T, S, DO, Chl-a, NO₃ (Fig. 4),

and datalogger

 NH_4 , PO_4 , SiO_4 , SS, pH (not shown)

Fig. 4. Variability of temperature, salinity, % Dissolved Oxygen, Chl-a and NO₃ along the complete tidal cycles conducted in Spring, Summer and Autumn tidal cycles.

Fig. 2. RTO location, multiparametric probe with sensors

Study area:

Ria Formosa productive coastal lagoon on the south coast of Portugal (Fig. 1).

Fig. 1. Location of Ria Formosa, on south coast of Portugal, sampling stations , deployment of Pressure Transducers (PT) \neq and real time observation station (RTO), and the limits of the water bodies (WB)

BOTTOM: 8-day composite SST (left) and Chl-*a* (right) satellite images from OceanColor (<u>https://oceancolor.gsfc.nasa.gov/</u>) at periods typical of the sampled seasons (indicated by 1 to 3).

Vision: Advancing the prediction of global changes in the Ria Formosa ecosystem

Implementation of an integrative "observatory":

- Data from continuous real time observations;
- Discrete *in-situ* field campaigns, at sites representative of the water bodies under Water Framework Directive;
- Hydrodynamic-biogeochemical mechanistic models (ongoing calibration and validation):
 - System of numerical models SCHISM (Semi-implicit Cross-scale Hydroscience Integrated System Model), to simulate the hydrodynamics and biogeochemical processes;

- Development: customizable and integrative WebSIG platform (access to observations, real-time forecasts and future scenarios to stakeholders/end-users).

What do these tell about?

Differences between seasons are not strictly marked

- Temperature in Summer reflects upwelling events shown in Fig. 3. • Extreme DO values at WB5 - the shallowest place at the eastern edge of Ria Formosa, low values during early morning (< 60%).
- Chl-*a* max in Summer, after upwelling confirmed by satellite images (Fig.3).
- NO₃ max at WB5-R, in antiphase with tide and salinity, associated with the highest freshwater input, \uparrow in Summer by upwelling and globally lower in Autumn, by consumption.
- Provide observations to support the numerical model calibration and continuous validation.

Final Remarks

Important observational data coupled with modeling can be translated into information useful for end-users and decision makers.

Facilitate the better understanding of the functioning of this ecosystem, and contribute to its short and long-term management and protection, imperative to building knowledge-based societies.

Acknowledgements: UBEST Project is funded by the Fundação para a Ciência e a Tecnologia, PTDC/AAG-MAA/6899/2014